miércoles, 15 de febrero de 2012

Lenguaje Ensamblador. (Lab)

El lenguaje ensamblador, o assembler (assembly language en inglés) es un lenguaje de programación de bajo nivel para los computadoresmicroprocesadores, microcontroladores, y otros circuitos integrados programables. Implementa una representación simbólica de los códigos de máquina binarios y otras constantes necesarias para programar una arquitectura dada de CPU y constituye la representación más directa del código máquina específico para cada arquitectura legible por un programador. Esta representación es usualmente definida por el fabricante de hardware, y está basada en los mnemónicos que simbolizan los pasos de procesamiento (las instrucciones), los registros del procesador, las posiciones de memoria, y otras características del lenguaje. Un lenguaje ensamblador es por lo tanto específico a cierta arquitectura de computador física (o virtual). Esto está en contraste con la mayoría de los lenguajes de programación de alto nivel, que, idealmente son portables.


Características
El código escrito en lenguaje ensamblador posee una cierta dificultad de ser entendido ya que su estructura se acerca al lenguaje máquina, es decir, es un lenguaje de bajo nivel.
El lenguaje ensamblador es difícilmente portable, es decir, un código escrito para un microprocesador, puede necesitar ser modificado, para poder ser usado en otra máquina distinta. Al cambiar a una máquina con arquitectura diferente, generalmente es necesario reescribirlo completamente.
Los programas hechos por un programador experto en lenguaje ensamblador son generalmente mucho más rápidos y consumen menos recursos del sistema (memoria RAM y ROM) que el programa equivalente compilado desde un lenguaje de alto nivel. Al programar cuidadosamente en lenguaje ensamblador se pueden crear programas que se ejecutan más rápidamente y ocupan menos espacio que con lenguajes de alto nivel.
Con el lenguaje ensamblador se tiene un control muy preciso de las tareas realizadas por un microprocesador por lo que se pueden crear segmentos de código difíciles y/o muy ineficientes de programar en un lenguaje de alto nivel, ya que, entre otras cosas, en el lenguaje ensamblador se dispone de instrucciones del CPU que generalmente no están disponibles en los lenguajes de alto nivel.
También se puede controlar el tiempo en que tarda una rutina en ejecutarse, e impedir que se interrumpa durante su ejecución.

Número de pasos
Hay dos tipos de ensambladores basados en cuántos pasos a través de la fuente son necesarios para producir el programa ejecutable.
Los ensambladores de un solo paso pasan a través del código fuente una vez y asumen que todos los símbolos serán definidos antes de cualquier instrucción que los refiera.
Los ensambladores del dos pasos crean una tabla con todos los símbolos y sus valores en el primer paso, después usan la tabla en un segundo paso para generar código. El ensamblador debe por lo menos poder determinar la longitud de cada instrucción en el primer paso para que puedan ser calculadas las direcciones de los símbolos.
La ventaja de un ensamblador de un solo paso es la velocidad, que no es tan importante como lo fue en un momento dado los avances en velocidad y capacidades del computador. La ventaja del ensamblador de dos pasos es que los símbolos pueden ser definidos dondequiera en el código fuente del programa. Esto permite a los programas ser definidos de maneras más lógicas y más significativas, haciendo los programas de ensamblador de dos pasos más fáciles leer y mantener.

 Importancia del lenguaje ensamblador
La importancia del lenguaje ensamblador radica principalmente que se trabaja directamente con el microprocesador; por lo cual se debe de conocer el funcionamiento interno de este, tiene la ventaja  de que en él se puede realizar cualquier tipo de programas que en los lenguajes de alto nivel no lo pueden realizar. Otro punto sería que los programas en ensamblador ocupan menos espacio en memoria.

 Ventajas y desventajas del Lenguaje Ensamblador

Ventajas
Como trabaja directamente con el microprocesador al ejecutar un programa, pues como este lenguaje es el más cercano a la máquina la computadora lo procesa más rápido.

Eficiencia de tamaño.- Un programa en ensamblador no ocupa mucho espacio en memoria  porque no tiene que cargan librerías y demás como son los lenguajes de alto nivel

Flexibilidad.- Es flexible porque todo lo que puede hacerse con una máquina, puede hacerse en el lenguaje ensamblador de esta máquina; los lenguajes de alto nivel tienen en una u otra forma limitantes para explotar al máximo los recursos de la máquina. O sea que en lenguaje ensamblador se pueden hacer tareas específicas que en un lenguaje de alto nivel no se pueden llevar a cabo porque tienen ciertas limitantes que no se lo permite 

Desventajas

Tiempo de programación .- Como es un lenguaje de bajo nivel requiere más instrucciones para realizar el mismo proceso, en comparación con un lenguaje de alto nivel. Por otro lado, requiere de más cuidado por parte del programador, pues es propenso a que los errores de lógica se reflejen más fuertemente en la ejecución.

Programas fuente grandes .- Por las mismas razones que aumenta el tiempo, crecen los programas fuentes; simplemente requerimos más instrucciones primitivas para describir procesos equivalentes. Esto es una desventaja porque dificulta el mantenimiento de los programas, y nuevamente reduce la productividad de los programadores.

Peligro de afectar recursos inesperadamente .- Que todo error que podamos cometer, o todo riesgo que podamos tener, podemos afectar los recursos de la maquina, programar  en este lenguaje lo más común que pueda pasar es que la máquina se bloquee o se reinicialice. Porque con este lenguaje es perfectamente posible (y sencillo) realizar secuencias de instrucciones inválidas, que normalmente no aparecen al usar un lenguaje de alto nivel.

Falta de portabilidad.- Porque para cada máquina existe un lenguaje ensamblador; por ello, evidentemente no es una selección apropiada de lenguaje cuando deseamos codificar en una máquina y luego llevar los programas a otros sistemas operativos o modelos de computadoras.

Relación entre el código binario y el lenguaje ensamblador
En el código binario se utilizan ceros y unos, mientras que el lenguaje ensamblador es una colección de símbolos mnemónicos que representan: operaciones, nombres simbólicos, operadores y símbolos especiales.
La relación entre estos dos lenguajes sería que el binario es el lenguaje que la máquina entiende y el ensamblador se acerca más lenguaje de esta.
Manejo de la memoria: Direccionamiento (interno y externo)
El manejo de la memoria depende de que procesador tenga la máquina, entre los cuales a continuación se mencionan los siguientes:
·        Memoria de Programa
·        Memoria Externa de Datos
·        Memoria Interna de Datos
·        Registros de Funciones Especiales
·        Memoria de Bit.
El espacio de la Memoria de Programa contiene todas las instrucciones, datos, tablas y cadenas de caracteres (strings) usadas en los programas. Esta memoria se direcciona principalmente usando el registro de 16 bits llamado Data Pointer. El tamaño máximo de la Memoria de Programa es de 64 Kbytes.
La Memoria Externa de Datos contiene todas las variables y estructuras de datos que no caben en la memoria interna del Microprocesador. Esta memoria se direcciona principalmente por el registro de 16 bits Data Pointer, aunque también se puede direccionar un banco de Memoria Externa de Datos de 256 bytes usando los dos primeros registros de propósito general .
El espacio de Memoria Interna de Datos funcionalmente es la memoria de datos más importante, ya que ahí es donde residen cuatro bancos de registros de propósito general; la pila o stack del programa; 128 bits de los 256 bits de un área de memoria direccionable por bit y todas las variables y estructuras de datos operadas directamente por el programa. El tamaño máximo de la Memoria Interna de Datos es de 256 bytes.
Contiene un espacio para los denominados Registros de Funciones Especiales destinado para los puertos de entrada/salida, temporizadores y puerto serie del circuito integrado. Estos registros incluyen al Stack Pointer; al registro de la palabra de estado del programa y al Acumulador. La cantidad máxima de Registros de Funciones Especiales es 128.
Todos los Registros de Funciones Especiales tienen direcciones mayores a 127 y se ubican en los 128 bytes superiores de la Memoria Interna de Datos. Estas dos áreas de la Memoria Interna de Datos se diferencian por el modo de direccionamiento usado para accesarlas. Los Registros de Funciones Especiales solo se pueden accesar usando el modo de direccionamiento Directo, mientras que los 128 bytes superiores solo se pueden accesar con el modo de direccionamiento Indirecto.
Por otra parte, el espacio de Memoria de Bit se usa para almacenar variables y banderas de un bit. El tamaño máximo de la Memoria de Bit es de 256 bits, 128 de los bits comparten su espacio con 16 bytes del espacio de la Memoria Interna de Datos y los otros 128 bits lo hacen con los Registros de Funciones Especiales.

Si deseas saber más acerca de las variables que maneja este lenguaje esta es la dirección.

Bibliografías:

2 comentarios:

  1. Bien; van 8 para el lab de integrados.

    ResponderEliminar
  2. Ah, y para aclarar, los puntos de lab y de tareas individuales los pongo siempre a la persona quien sale en "publicado por". En este caso Obed.

    ResponderEliminar